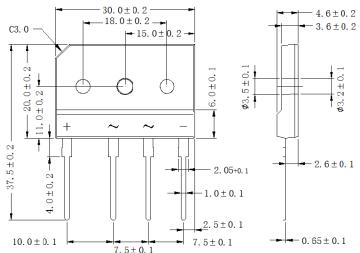


GBJ15005 thru **GBJ1510**

15.0 A Single-Phase Silicon Bridge Rectifier Rectifier Reverse Voltage 50 to 1000V

Features

- Ideal for printed circuit board mounting
- This series is UL listed under the Recognized Component Index, file number E484648
- The plastic material used carries Underwriters Laboratory flammability recognition 94V-0
- Built-in printed circuit board stand-offs
- High case dielectric strength
- High temperature soldering guaranteed 260 °C/5 seconds at 5 lbs (2.3kg) tension


Mechanical Data

Case: Reliable low cost construction utilizing

molded plastic technique

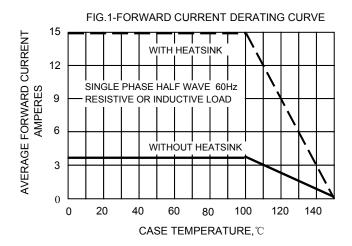
Terminals: Plated leads solderable per MIL-STD-202,

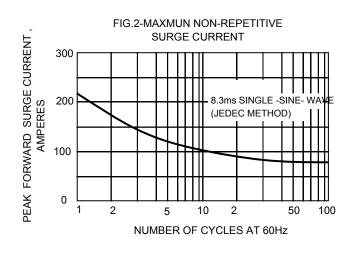
Method 208 Mounting Position: Any

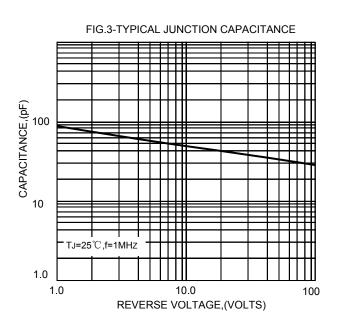
Dimensions in inches and (milimeters)

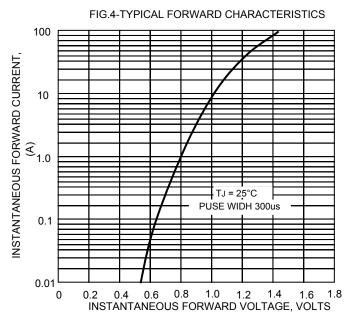
Maximum Ratings & Thermal CharacteristicsRating at 25°C ambient temperature unless otherwise specified, Resistive or Inductive load, 60 Hz. For Capacitive load derate current by 20%.

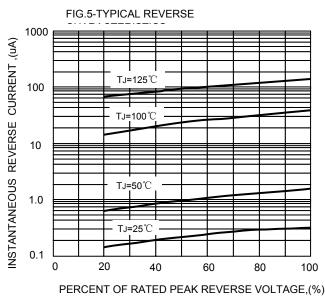
SYMBOL	GBJ 15005	GBJ	GBJ	GBJ	OD I			
		1501	1502	1504	GBJ 1506	GBJ 1508	GBJ 1510	UNIT
VRRM	50	100	200	400	600	800	1000	V
VRMS	30	70	140	280	420	560	700	V
VDC	50	100	200	400	600	800	1000	V
Land	15.0 3.2							А
I(AV)								
IFSM 220							Α	
VF	1.1						V	
lo.	10							uA
500								
Rejc	1.5							°C/W
TJ	-55 to +150							$^{\circ}\!\mathbb{C}$
Tstg	-55 to +150							$^{\circ}\!\mathbb{C}$
	VDC I(AV) IFSM VF IR ReJC TJ	VRMS 30 VDC 50 I(AV) IFSM VF IR ReJC TJ	VRMS 30 70 VDC 50 100 I(AV) IFSM VF IR ReJC TJ	VRMS 30 70 140 VDC 50 100 200 I(AV) IFSM VF IR ReJC TJ -5	VRMS 30 70 140 280 VDC 50 100 200 400 I(AV) 3.2 IFSM 220 VF 1.1 IR 500 ReJC 1.5 to +15	VRMS 30 70 140 280 420 VDC 50 100 200 400 600 I(AV) 3.2 IFSM 220 VF 1.1 IR 500 ReJC 1.5 TJ -55 to +150	VRMS 30 70 140 280 420 560 VDC 50 100 200 400 600 800 I(AV) 3.2 IFSM 220 VF 1.1 IR 500 ReJC 1.5 TJ -55 to +150	VRMS 30 70 140 280 420 560 700 VDC 50 100 200 400 600 800 1000 I(AV) 3.2 IFSM 220 VF 1.1 IR 500 ReJC 1.5 TJ -55 to +150


NOTES: 1.Measured at 1.0MHz and applied reverse voltage of 4.0V DC.


2.Device mounted on 300mm*300mm*1.6mm cu plate heatsink.






Rating and Characteristic Curves (TA=25°C Unless otherwise noted)

